Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Molecular switches based on the 2H-1-benzopyran (chromene) scaffold have been widely developed for their desirable photochromic and mechanochromic properties. Extended π-conjugation is necessary to stabilize the ring-opened merocyanine dye at room temperature leading to efficient switching under ambient conditions. To this end, naphthopyrans represent a special class of benzo-annulated benzopyrans that have been studied extensively as both photoswitches and more recently as mechanophores, generating intensely colored merocyanine dyes upon exposure to ultraviolet light or mechanical force, respectively. Alternative annulation strategies with judicious heteroatom substitution have also been studied in the photochemistry literature, but the mechanochemistry of 2H-1-benzopyrans has yet to be explored. Here, we report the mechanochemical activation of an indole-fused 2H-1-benzopyran mechanophore that generates a yellow-colored merocyanine dye in polymers that is subsequently transformed to a purple-colored dye upon treatment with acid. Neutralization with base recovers the yellow-colored merocyanine isomer with trans exocyclic alkene geometry through an unusual acid-mediated alkene isomerization. This study expands the repertoire of mechanochromic mechanophores based on (hetero)annulated benzopyrans to enable multicolor chromomorphic behavior in response to both mechanical force and acid for applications in stimuli-responsive polymeric materials with complex switching properties.more » « lessFree, publicly-accessible full text available August 26, 2026
-
Multimodal mechanophores are important targets for the design of complex stress-sensing materials due to their multicolor mechanochromic properties, which potentially enable discrete visual outputs under varying levels of stress and/or strain. We have developed a novel 3H-bis-naphthopyran mechanophore that imbues solid polymeric materials with force-dependent colorimetric sensing capabilities. Polydimethylsiloxane (PDMS) elastomers incorporating a 3H-bis-naphthopyran crosslinker were synthesized and deformed under uniaxial tension. The relative distribution of two distinctly colored merocyanine dyes is systematically biased under varying levels of applied stress and/or strain, resulting in the appearance of distinct coloration, which is characterized by pronounced changes in visible absorption spectra. This work demonstrates that judiciously designed bis-naphthopyran mechanophores can function as force sensors that visually report on the magnitude of applied force in elastomeric materials.more » « lessFree, publicly-accessible full text available September 29, 2026
-
In contrast to common angular naphthopyrans that exhibit strong photochromic and mechanochromic behavior, constitutionally isomeric linear naphthopyrans are typically not photochromic, due to the putative instability of the completely dearomatized merocyanine product. The photochemistry of linear naphthopyrans is thus relatively understudied compared to angular naphthopyrans, while the mechanochromism of linear naphthopyrans remains completely unexplored. Here we demonstrate that the incorporation of a polarizing dialkylamine substituent enables photochromic and mechanochromic behavior from polymers containing a novel linear naphthopyran motif. In solution phase experiments, a Lewis acid trap was necessary to observe accumulation of the merocyanine product upon photochemical and ultrasound-induced mechanochemical activation. However, the same linear naphthopyran molecule incorporated as a crosslinker in polydimethylsiloxane elastomers renders the materials photochromic and mechanochromic without the addition of any trapping agent. This study provides insights into the photochromic and mechanochromic reactivity of linear naphthopyrans that have conventionally been considered functionally inert, adding a new class of naphthopyran molecular switches to the repertoire of stimuli-responsive polymers.more » « less
-
Multimodal mechanophores that react under mechanical force to produce discrete product states with uniquely coupled absorption properties are interesting targets for the design of force-sensing polymers. Herein, we investigate the reactivity of a 2H-bis-naphthopyran mechanophore that generates thermally persistent mono-merocyanine and bis-merocyanine products upon mechanical activation in solution using ultrasonication, distinct from the thermally reversible products generated photochemically. We demonstrate that a force-mediated ester C(O)–O bond scission reaction following ring opening establishes an intramolecular hydrogen bond, locking one merocyanine subunit in the open form. Model compound studies suggest that this locked subunit confers remarkable thermal stability to bis-merocyanine isomers possessing a trans exocyclic alkene on the other subunit, implicating the formation of an unusual trans merocyanine isomer as the product of mechanochemical activation. Density functional theory calculations unexpectedly predict a thermally reversible retro-cyclization reaction of the bis-merocyanine species that could explain the mechanochemical generation of the unusual trans merocyanine isomer.more » « less
-
Understanding structure–mechanochemical reactivity relationships is important for informing the rational design of new stimuli-responsive polymers. To this end, establishing accurate reaction kinetics for mechanophore activation is a key objective. Here, we validate an initial rates method that enables the accurate and rapid determination of rate constants for ultrasound-induced mechanochemical transformations. Experimental reaction profiles are well-aligned with theoretical models, which support that the initial rates method effectively deconvolutes the kinetics of specific mechanophore activation from the competitive process of nonspecific chain scission.more » « less
An official website of the United States government
